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Abstract
A hierarchy of functions including the elliptic gamma function is introduced.
It can be interpreted as an elliptic analogue of the multiple gamma function
and its trigonometric limit coincides with a q-analogue of the multiple gamma
function. Some properties of the functions are considered.

PACS numbers: 02.10.De, 02.30.-f, 05.50.+q

1. Introduction

In various studies on mathematical physics, the elliptic functions play very important roles.
Especially, since the discovery of the elliptic solution of the Yang–Baxter equation [3], many
investigations of solvable lattice models and of commuting difference operators with elliptic
coefficients have been explored.

Recently, these facts have been studied from the point of view of an ‘elliptic analogue of
special function theory’. Frenkel and Turaev [5] reformulate a relation of the elliptic 6j -symbol
as a well poised hypergeometric series of elliptic coefficients. Their idea was developed by
Warnaar [27] and Rosengren [17]. They derived certain identities of elliptic hypergeometric
series. Spiridonov and Zhedanov [21, 22] considered an orthogonal function with elliptic
coefficients.

Among these results, one of the most important would be construction of the elliptic
gamma function by Ruijsenaars [18]. He showed the existence and uniqueness of the elliptic
gamma function G1(z|(τ0, τ1)) which satisfies the functional relation

G1(z + τ1|(τ0, τ1)) = θ0(z; τ0)G1(z|(τ0, τ1))

where θ0(z; τ) := ∏∞
k=0

(
1 − e2π

√−1(z+kτ)
)(

1 − e2π
√−1(−z+(k+1)τ )

)
. After his work,

Zabrodin [28] considered Baxter’sQ-operator by using this function. Felder and Varchenko [4]
used it for their studies on the elliptic Kniznik–Zamolodchikov (KZ) equation and gave a
cohomological interpretation of this function. Spiridonov [20] constructed an elliptic analogue
of the beta integral. We should mention the elliptic Macdonald–Morris conjecture presented
by van Diejen and Spiridonov [25].
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In this paper, we construct a hierarchy of functions including the elliptic gamma function.
They satisfy relations

Gr (z + τr | (τ0, . . . , τr )) = Gr−1 (z| (τ0, . . . , τr−1))Gr (z| (τ0, . . . , τr ))

G0 (z| (τ0)) := θ0(z; τ)
which can be considered as an elliptic analogue of the multiple gamma function. We call this
function the multiple elliptic gamma function. The multiple gamma function was introduced by
Barnes [2]. Vignéras [26] interpreted its special case as the function satisfying the generalized
Bohr–Mollerup theorem. The multiple elliptic gamma function can also be characterized by
using the defining relation and an initial value.

This paper is organized as follows: in section 2, we define a certain q-function and study
its properties. It is applied to construct the multiple elliptic gamma function. In section 3, we
construct the multiple elliptic gamma function and consider its uniqueness, some elementary
properties and a kind of trigonometric limit.

Finally, we note that generalizations of the gamma function have been applied to
construction of solutions for difference systems relevant to quantum integrable systems. For
example, Jimbo and Miwa [10], Miwa and Takeyama [12] and Miwa et al [13] constructed
integral solutions for the q-KZ equation by using a multiple sine function, which can be
considered as a kind of trigonometric analogue of the multiple gamma function. The author
and Ueno [15, 16] constructed an integral solution for hypergeometric q-difference systems.
Ruijsenaars [19] used his generalized function in order to study an eigenfunction of commuting
difference systems. The multiple elliptic gamma function is also expected to be applicable to
the theory of elliptic special functions.

2. Multiple q-shifted factorial

2.1. Definition and properties

First, we fix some notations. For 1 < j < r , τj are complex parameters satisfying �τj > 0.
We put qj := e2π

√−1τj , x := e2π
√−1z, τ := (τ0, τ1, . . . , τr ) and q := (q0, q1, . . . , qr). For

the set τ , we define τ +(j), τ−(j) and |τ | as

τ +(j) := (τ0, τ1, . . . , τr , τj )

τ−(j) := (τ0, τ1, . . . , τj−1, τj+1, . . . , τr )

τ [j ] := (τ0, τ1, . . . , τj−1,−τj , τj+1, τr )∣∣τ ∣∣ :=
r∑

j=0

τj .

Similarly, we introduce the following notation:

q−(j) := (q0, q1, . . . , qj−1, qj+1, . . . , qr)

q[j ] := (q0, q1, . . . , qj−1, q
−1
j , qj+1, . . . , qr).

We define the multiple q-shifted factorial as the following infinite product (see Appel [1]):

Definition 2.1.

(
x; q)(r)∞ :=

∞∏
i1,i2,...,ir=0

(1 − xq
i0
0 q

i1
1 · · · qir

r ).
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This function is a meromorphic function of z and has its zeros at

z = m0τ0 + m1τ1 + · · · + mrτr + n (mj ∈ Z�0, n ∈ Z)

when τj 
= τk for j 
= k and 0 � j, k � r .
(
x; q)(r)∞ satisfies a functional relation

(
qjx; q)(r)∞ :=

(
x; q)(r)∞(

x; q−(j)
)(r−1)
∞

.

We can extend
(
x; q)(r)∞ in the sense of Felder and Varchenko [4]. If �τj0 < 0 only for

j0 ∈ {0, . . . , r}, then we can determine a unique function satisfying the above relation as(
x; q)(r)∞ := 1(

q−1
j0

x; q[j0]
)(r)
∞

. (1)

However, the statement about the positions of zeros and poles is not valid. In the following
argument, we suppose �τj > 0 for all j � 0 when the condition on τ is not mentioned
especially.

Next, we represent
(
x; q)(r)∞ as a product of other multiple q-shifted factorials. For

example, we consider the case when r = 1. We can separate the product as follows:(
x; q)(1)∞ =

∏
i0�i1

(1 − xq
i0
0 q

i1
1 )
∏
i1<i0

(1 − xq
i0
0 q

i1
1 )

=
∏
j0,j1

(1 − xq
j0
0 q

j0+j1
1 )

∏
j0,j1

(1 − xq
j0+j1+1
0 q

j1
1 )

= (x; (q0q1, q1)
)(1)
∞
(
q0x; (q0q1, q0)

)(1)
∞ .

Similarly, in the case r = 2, we have(
x; q)(2)∞ = (x; (q0q1q2, q1q2, q2)

)(2)
∞
(
xq1; (q0q1q2, q1q2, q1)

)(2)
∞

×(xq0q2; (q0q1q2, q0q2, q2)
)(2)
∞
(
xq0; (q0q1q2, q0q2, q0)

)(2)
∞

×(xq0q1; (q0q1q2, q0q1, q1)
)(2)
∞
(
xq2

0q1; (q0q1q2, q0q1, q0)
)(2)
∞ .

We can generalize the above argument.

Proposition 2.2.

(
x; q)(r)∞ :=

∏
σ

(
x

r−1∏
j=0

q
dσ,j
σ (j);pσ

)(r)
∞

where σ runs over all permutations of {0, 1, . . . , r},

pσ := (pσ
0 , p

σ
1 , . . . , p

σ
r ) where pσ

j :=
r∏

k=j

qσ(k)

and dσ,j counts the number of adjacent inversions (cf [23])

dσ,j :=
{

0 if j = 0

# {k ∈ {0, . . . , j} |σ(k − 1)〉σ(k) } if j > 0.
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We remark a relation between
(
x; q)(r)∞ and a certain q-series. We define generalized

q-polylogarithms as

Lir+1(x; (q0, . . . , qr−1)) :=
∞∑
j=1

xj

j
∏r−1

i=0 (1 − q
j

i )
for |x| < 1.

This function can be defined by using Jackson integrals, as∫ a

0
f (t) dq t = a(1 − q)

∞∑
n=0

f (aqn)qn

(cf [7]). Lir (x; q) has the following iterated integral representation:

Li1(x) = − log(1 − x) Li2(x; q0) = 1

1 − q0

∫ x

0
Li1(x)

dq0 t

t

Lir+1(x; (q0, . . . , qr−1)) = 1

1 − qr−1

∫ x

0
Lir (t; (q0, . . . , qr−2))

dqr−1 t

t
for r � 2.

Then we have the following proposition:

Proposition 2.3.

(x; q)(r)∞ = exp
(− Lir+2(x; q))

when |x| < 1.

Proof. We take such a branch of logarithm that

log(1 − x) =
∞∑
k=1

xk

k
for |x| < 1.

Through straightforward calculation, we have

log
(
x; q)(r)∞ =

∞∑
i0,i1,...,ir=0

log(1 − xq
i0
0 q

i1
1 · · · qir

r )

= −
∞∑
j=1

∞∑
i0,i1,...,ir=0

1

j
xjq

i0j

0 q
i1j

1 · · · qir j
r

= −
∞∑
j=1

xj

j
∏r

i=0(1 − q
j

i )
.

�
In the case τ0 = τ1 = · · · = τr = τ , we can see that(

x; q)(r)∞ :=
(
x; (q, q, . . . , q︸ ︷︷ ︸

r+1

)

)(r)
∞

=
∞∏
k=0

(1 − xqk)(
k+r−1

r ).

Proposition 2.3 is rewritten as follows:

(x; q)(r)∞ = exp (−Lir+2(x; q))
where Lir (x; q) is Kirillov’s q-polylogarithm [11]

Lir (x; q) :=
∞∑
j=1

xj

j (1 − qj )r−1
.
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2.2. Differential relation

We define χr

(
z| τ) as the logarithmic derivative of

(
x; τ)(r)∞

χr

(
z| τ) := ∂

∂z
log
(
x; q)(r)∞ = −

∞∑
i0,...,ir

2π
√−1xqi0

0 · · · qir
r

1 − xq
i0
0 · · · qi0

r

.

Then, we can see that

∂

∂τj
log
(
x; q)(r)∞ = −

∞∑
i0,...,ir=0

2π
√−1ij xq

i0
0 · · · qir

r

1 − xq
i0
0 · · · qir

r

= −
∞∑

i0,...,ir ,ir+1=0

2π
√−1xqi0

0 · · · qij +ir+1

j · · · qir
r

1 − xq
i0
0 · · · qij +ir+1

j · · · qir
r

+
∞∑

i0,...,ir=0

2π
√−1xqi0

0 · · · qir
r

1 − xq
i0
0 · · · qir

r

= χr+1
(
z| τ +(j)

)− χr

(
z| τ) .

Thus, we have a differential relation between the logarithmic derivatives:

∂

∂τj
χr(z|τ) = ∂

∂z
χr+1

(
z| τ +(j)

)− ∂

∂z
χr

(
z| τ) (2)

= ∂

∂z
χr+1

(
z + τj

∣∣ τ +(j)
)
. (3)

3. Multiple elliptic gamma function

3.1. Definition

In this section, we introduce the multiple gamma function Gr(z|τ).
Definition 3.1.

Gr

(
x| τ) := (x−1q0q1 · · · qr; q)(r)∞

{
(x; q)(r)∞

}(−1)r
.

We note thatG1 (x| (τ0, τ1)) is the elliptic gamma function [4,18]. In the case where ∀�τj > 0,
this function is meromorphic and we can easily see the locations of zeros and poles of this
function. For example, when τj 
= τk for j 
= k, j, k ∈ {0, . . . , r}, Gr

(
x| τ) has the following

zeros and poles: if r is odd, then Gr(z|τ) has simple zeros at

z = m0τ0 + m1τ1 + · · · + mrτr + n (mj ∈ Z>0, n ∈ Z)

and simple poles at

z = m0τ0 + m1τ1 + · · · + mrτr + n (mj ∈ Z�0, n ∈ Z).

If r is even, then Gr(z|τ) has simple zeros at

z = m0τ0 + m1τ1 + · · · + mrτr + n (mj ∈ Z, n ∈ Z)

and no poles.
We can see that Gr

(
z| τ) = Gr

(
z| τ̃), where τ̃ is a permutation of the order of τ . From

the definition of the multiple elliptic gamma function, we can see a functional relation of
Gr

(
z| τ)
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Proposition 3.2. (i) Gr

(
z| τ) satisfies a relation

Gr

(
z + 1| τ) = Gr

(
z| τ)

Gr

(
z + τj

∣∣ τ) = Gr−1
(
z| τ(j))Gr

(
z| τ) for j = 0, . . . , r

G0 (z| (τ0)) = θ0(z; q0)

where

θ0(z; q0) := (x; (q0))
(0)
∞ (qx−1; (q0))

(0)
∞ .

(ii) At the point z = ∣∣τ ∣∣ /2, Gr

(
z| τ) takes the following value:

Gr

( ∣∣τ ∣∣
2

∣∣∣∣∣ τ
)

=
{{(

q
1
2

0 q
1
2

1 · · · q
1
2
r ; q)(r)∞

}2
r: even

1 r: odd.

From relation (1), we can expand this function in a similar way to Felder and Varchenko [4].
If �τj0 < 0 for only one j0 ∈ {0, . . . , r}, then

Gr

(
z| τ) := 1

Gr

(
z − τj0

∣∣ τ [j0]
) (4)

is a unique meromorphic function satisfying the first and the second relations of (i). However,
the positions of zeros and poles are valid.

3.2. Uniqueness

We can prove a kind of uniqueness of the function satisfying the relation in proposition 3.2.

Proposition 3.3. If Gr−1 (z| (τ0, . . . , τr−1)) (�τj > 0) is given, we can determine the unique
meromorphic function u(z) which satisfies:

(i) u(z) is holomorphic upper half plane;
(ii) u(z + 1) = u(z) u(z + τr) = Gr−1

(
z| τ) u(z);

(iii) u(
∣∣τ ∣∣ /2) =

{{(
q

1
2

0 q
1
2

1 · · · q
1
2
r ; q)(r)∞

}2
r: even

1 r: odd.

Proof. This proposition can be proved by using the same argument as Felder and Varchenko [4].
For some j and some δ ∈ R, there exists a strip 0 < �z < �τj + δ in which u(z) = Gr

(
z| τ)

has no zero. If v(z) is another meromorphic function satisfying the above (i) ∼ (iii), then
v(z)/u(z) is doubly periodic and holomorphic on the strip. Thus, it is a bounded entire function.
From Liouville’s theorem, v(z)/u(z) is a constant. From the condition (iii), it follows that
v(z) = u(z). �

Imposing the another condition on the set of the parameters, we can determine Gr

(
z| τ)

without the above condition (i).

Proposition 3.4. For τ = (τ0, τ1, . . . , τr ), if there exist such j and k that 1, τj and τk are
linearly independent over Q, then we can determine a unique meromorphic function u(z)

satisfying

u(z + 1) = u(z)

u(z + τj ) = Gr−1(z|τ(j))u(z) u(z + τk) = Gr−1(z|τ(k))u(z)

u

(∣∣τ ∣∣
2

)
=
{{(

q
1
2

0 q
1
2

1 · · · q
1
2
r ; q)(r)∞

}2
r: even

1 r: odd.
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Proof. We suppose that there exist two functions u(z) and v(z) satisfying the above relation.
Then, from the relation

u(z + 1)

v(z + 1)
= u(z + τj )

v(z + τj )
= u(z + τk)

v(z + τk)

it follows that u(z)/v(z) is a triple periodic meromorphic function, that is, constant. Therefore,
u(z) is equal to v(z) because they take the same value at z = ∣∣τ ∣∣ /2. �

From these propositions, it follows that for given τ satisfying the above condition we
determine Gr

(
z| τ) if Gr−1(z|(τ0, . . . , τr−1)) is given.

3.3. Elementary properties

From the definition of the multiple elliptic gamma function, we derive some formulae by using
straightforward calculation.

Proposition 3.5.

(i) Gr

(
z| τ) {Gr

( ∣∣τ ∣∣− z
∣∣ τ)}(−1)r−1 = 1

(ii) Gr

(
z

∣∣∣(τ0

N
, . . . ,

τr

N

))
=

N−1∏
n0,n1,...,nr=0

Gr

(
z +

n0τ0 + · · · + nrτr

N

∣∣∣ τ) .
Claim (i) is an analogue of the complementary formula of Euler’s gamma function and claim (ii)
is an analogue of the Gauss–Legendre multiplication formula for the gamma function.

Next, we represent Gr

(
z| τ) by using trigonometric series. These are a generalization of

the so-called ‘summation formula’ of Ruijsenaars [18] and Felder and Varchenko [4].

Proposition 3.6 (Summation formula). If z is contained in the region

z ∈
{
z ∈ C

∣∣∣∣|�(2z − ∣∣τ ∣∣)| <∑ |�τj |
}

then Gr

(
z| τ) is represented by the following formula:

Gr

(
z| τ) =


exp

(
1

(2
√−1)r

∞∑
l=1

sin(πl(2z − ∣∣τ ∣∣))
l
∏r

j=1 sin πlτj

)
r: odd

exp

(
1

2r (
√−1)r+1

∞∑
l=1

cos(πl(2z − ∣∣τ ∣∣))
l
∏r

j=1 sin πlτj

)
r: even.

We note that this formula is valid for Gr

(
z| τ) with some dm τj < 0 defined by using the

relation (4).
From proposition 2.2, the next proposition follows.

Proposition 3.7.

Gr

(
z| τ) =

∏
σ

Gr

(
z +

r−1∑
j=0

dσ,j τσ(j)

∣∣∣∣∣µσ

)
where σ is a permutation of {0, . . . , r}, dσ,j was introduced in proposition 2.2 and

µσ := (µσ
0 , µ

σ
1 , . . . , µ

σ
r ) where µσ

j =
r∑

k=j

τσ(k).



7418 M Nishizawa

3.4. Differential relation

We define ψr(z|τ) as the logarithmic derivative of Gr

(
z| τ).

ψr(z|τ) := d

dz
logGr

(
z| τ) = (−1)rχr(z|τ) + χr(|τ | − z|τ).

Similarly to (2) and (3) we can derive a relation
∂

∂τj
χr

( |τ | − z
∣∣ τ) = − ∂

∂z
χr+1

( |τ +(j)| − z
∣∣ τ +(j)

)− ∂

∂z
χr

( |τ | − z
∣∣ τ)

= − ∂

∂z
χr+1

( ∣∣τ +(j)
∣∣− (z + τj )

∣∣ τ +(j)
)
.

Thus, we can see the following proposition:

Proposition 3.8. There is a differential relation between ψr(z|τ)(
∂

∂z
+

∂

∂τj

)
ψr(z|τ) = − ∂

∂z
ψr+1(z|τ +(j))

or, equivalently,
∂

∂τj
ψr

(
z| τ) = − ∂

∂z
ψr+1

(
z + τj

∣∣ τ +(j)
)
.

Furthermore the multiple elliptic gamma function satisfies a differential relation(
∂

∂τj
Gr

(
z| τ))Gr+1

(
z| τ +(j)

)
+

∂

∂z

{
Gr+1

(
z + τj

∣∣ τ +(j)
)} = 0.

3.5. Trigonometric limit

The multiple q-gamma function Gr(z; q) was introduced as

G0(z; a) := [z] := 1 − qz

1 − q

Gr(z + 1; q) := (1 − q)−(
z

n)
∞∏
k=1


(

1 − qz+k

1 − qk

)( −k

n−1)

(1 − qk)gr (z,k)

 for r � 1

where

gr(z, u) =
(
z − u

n − 1

)
−
( −u

n − 1

)
.

{Gr(z; q)}r�0 is a hierarchy of meromorphic functions satisfying a q-analogue of the
generalized Bohr–Mollerup theorem

(i) Gr(z + 1; q) = Gr−1(z; q)Gr(z; q) (ii) Gr(1; q) = 1

(iii)
dr+1

dzr+1
logGr+1(z + 1; q) � 0 for z � 0 (iv) G0(z; q) = [z]

when 0 < q < 1. We can relate our multiple elliptic gamma function to the multiple q-gamma
function through a kind of trigonometric limit.

Proposition 3.9. In the case when τ1 = τ2 = · · · = τr = τ , as τ0/
√−1 → ∞,

Gr(τz|τ)
r∏

k=0

((
q; (q0, q, q, . . . , q︸ ︷︷ ︸

k

)
)(r)
∞

)(z−1
r−k)

→ Gr(z; q)

for z in any compact set in the domain C\(Z + Zτ) where q := e2π
√−1τ .
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3.6. Cauchy determinant represented by the double elliptic gamma function

Vardi [24] remarked that a special case of the Cauchy determinant can be represented by using
the double gamma function.

det

[
1

α + i + j

]
1�i,j�n

= G2(n + 1)2 G2(n + 2 + α)2

G2(2 + α)G2(2n + 2 + α)
(5)

where G2(z) is Barnes’ G-function [2].
We can generalize this formula to the elliptic case. An elliptic analogue of the Cauchy

determinant [6] is known as

det

[
θ(u + ai + bj )

θ(ai + bj )θ(u)

]
1�i,j�n

= θ(u +
∑n

r=1(ar + bj ))

θ(u)

∏
1�i,j�n θ(aj − ai)θ(bj − bi)∏

i,j=1,...,n θ(ai + bj )

where θ(z) = θ(z; τ0) is Jacobi’s first theta function defined as

θ(z) = θ(z; τ0) := √−1eπ
√−1(τ0/4−z)

(
q0; (q0)

)(0)
∞ θ0(z; τ0).

In the case where

ai = iτ1 + β bj = jτ2

we can represent this determinant by the following formula:

det

[
θ0(u + β + iτ1 + jτ2; τ0)

θ0(iτ1 + jτ2; τ0)(θ0(u; τ0))

]
1�i,j,�n

= exp

(
n(n2 − 1)π

√−1(τ1 + τ2)

3
+
n(n − 1)

2
β

)
θ0

(
u + nβ + n(n+1)(τ1+τ2)

2 ; τ0

)
θ0(u; τ0)

× G2 ( (n + 1)τ1| (τ0, τ1, τ1))G2 ( (n + 1)τ2| (τ0, τ2, τ2))

G1 (τ1| (τ0, τ1))
n G1 (τ2| (τ0, τ2))

n G2 (τ1| (τ0, τ1, τ1))G2 (τ2| (τ0, τ2, τ2))

×G2 (β + (n + 1)τ1 + τ2| (τ0, τ1, τ2))G2 (β + τ1 + (n + 1)τ2| (τ0, τ1.τ, 2))

G2 (β + (n + 1)τ1 + (n + 1)τ2| (τ0, τ1, τ2))G2 (β + τ1 + τ2| (τ0.τ1, τ2))
.

(6)

We take a trigonometric limit of (6) similarly to the argument in section 3.4. We put τ1 = τ2 = τ

and β = τα. As τ0/
√−1 → ∞ and u/

√−1 → ∞, we have the following determinant
formula:

det

[
1

1 − qα+i+j

]
1�i,j�n

= q
n(n2−1)

3
G2(1 + n; q)2G2(α + n + 2; q)2

G2(α + 2; q)G2(α + 2(n + 1); q) (7)

where G2(z; q) is the multiple q-gamma function [14]. This is a q-analogue of formula (5).
We can obtain the formula (5) as the classical limit of the formula (7).

Hasegawa [8, 9] derived a generalization of the elliptic Cauchy determinant:

det

[
n∏

r=1

θ(ai + bj + hYr<i + (u − (i − 1)h)δr,i)

]
1�i,j�

= θ

(
u +

n∑
r=1

(ai + bj )

)
n−1∏
i=1

θ(u − ih)
∏

1�i<j�n

θ(aj − ai)θ(bj − bi)

where δi,j is Kronecker’s delta and Yi·j is defined as follows:

Yi,j :=
{

1 if i < j

0 otherwise.
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In the case when

ai = iτ1 bj = jτ2

we can represent a special case of Hasegawa’s formula by using the double elliptic gamma
function:

det

[
n∏

r=1

θ0(iτ1 + jτ2 + hYr<i + (u − (i − 1)h)δr,i; τ0)

]
1�i,j�n

= exp

(
n(n2 − 1)π

√−1

3
(τ1 + τ2)

)
G1 (u| (τ0, h))

G1 (u − (n − 1)h| (τ0, h))

×G2 ( (n + 1)τ1| (τ0, τ1, τ1))G2 ( (n + 1)τ2| (τ0, τ2, τ2))

G1 (τ1| (τ0, τ1))
n G1 (τ2| (τ0, τ2))

n .

The trigonometric limit and rational limit of this formula is represented by the following
formula:

det

[
n∏

r=1

(
1 − q iτ1+jτ2+hYr<i+(u−(i−1)h)δr,i

)]
1�i,j�n

= q
n(n2−1)

3
G1(u; q)G2(n + 1; q)2

G1(u − (n − 1)h; q)

det

[
n∏

r=1

(
iτ1 + jτ2 + hYr<i + (u − (i − 1)h)δr,i

)]
1�i,j�n

= G1(u)G2(n + 1)2

G1(u − (n − 1)h)
.
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